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Heart, Eye, and Artificial Intelligence: A Review
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Abstract

Heart disease continues to be the leading cause of death in the USA. 
Deep learning-based artificial intelligence (AI) methods have become 
increasingly common in studying the various factors involved in car-
diovascular disease. The usage of retinal scanning techniques to diag-
nose retinal diseases, such as diabetic retinopathy, age-related macu-
lar degeneration, glaucoma and others, using fundus photographs and 
optical coherence tomography angiography (OCTA) has been ex-
tensively documented. Researchers are now looking to combine the 
power of AI with the non-invasive ease of retinal scanning to examine 
the workings of the heart and predict changes in the macrovascula-
ture based on microvascular features and function. In this review, we 
summarize the current state of the field in using retinal imaging to 
diagnose cardiovascular issues and other diseases.
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Introduction: The Retinal Window Into the 
Heart

Heart disease is the primary cause of death in the USA [1, 2]. 
Cardiovascular health is invariably dependent on the condition 
of vascular pipelines that are subject to internal and external 
stressors, such as genetic factors, improper regulation of lipids 
and glucose, irregular blood pressure, and hypoxia [3]. Certain 
cardiovascular conditions have been found to be correlated 
with specific characteristics of retinal structures and microvas-
culature. Thus, the retinal microvasculature provides a non-in-
vasive window into the pathological development of systemic 
vascular diseases. For instance, hypertensive patients exhibit 
specific retinopathies such as arterial narrowing, papilledema, 
and arteriovenous nicking [3]. Systemic hypertension can lead 
to glaucoma, cataracts and age-related macular degeneration, 
while systemic hypotension can result in glaucomatous optic 
neuropathies. Retinal atherosclerosis is strongly correlated 

with coronary artery disease in regards to the spread of dis-
ease and the magnitude of severity, suggesting that microvas-
culature and macrovasculature are affected in an intertwined 
manner [4]. The purpose of this review is to focus on the field 
of cardiovascular diagnostics based on retinal imaging, with 
an emphasis on the emerging role of deep learning in retinal 
imaging.

Current Role of Retinal Scanning in Eye Diseas-
es

Diabetic retinopathy

According to the National Eye Institute, diabetic retinopathy is 
a major cause of blindness for adults in the USA [5]. It is sug-
gested that irregular glucose levels damage small blood ves-
sels in the retina and narrow retinal arterioles, causing swelling 
and ischemia of the eye tissue that leads to blindness. There is 
a growing understanding that retinal dysfunction in diabetic 
retinopathy is the result of a complex crosstalk between glial 
cells, neurons and the retinal microvasculature over a period 
of time [6]. Since the disease is largely asymptomatic in its 
earlier non-proliferative stages, diabetic patients require regu-
lar screening by retinal fundus exams to monitor and prevent 
disease progression.

Retinal imaging

Optical coherence tomography angiography (OCTA) is a 
non-invasive imaging technique for the visualization of reti-
nal vascular networks that provides accurate information on 
blood flow and depth and volume of ocular structures and their 
tendency to scatter or reflect light, all of which help in diag-
nosing the correct clinical stage of the disease and tracking the 
severity of disease progression [7, 8]. Fluorescence lifetime 
imaging ophthalmoscopy (FLIO) is a novel imaging modality 
that measures retinal fluorophores by their decay lifetime, pro-
viding a more comprehensive picture of retinal structure and 
integrity compared to fundus autofluorescence (FAF), which 
primarily visualizes lipofuscin [9]. FLIO is used to investigate 
a variety of ophthalmic conditions including diabetic retinopa-
thy, macular holes, retinal artery occlusion, age-related macu-
lar degeneration, central serous chorioretinopathy, macular 
telangiectasia type 2, Stargardt disease, and even Alzheimer’s. 
Adaptive optics scanning laser ophthalmoscopy (AO SLO) has 
been used with fluorescein angiography to visualize micro-
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scopic details of the retinal vasculature, which has led to its use 
in studying retinal vasculopathies such as diabetic retinopathy, 
retinal vein occlusion (RVO) and sickle cell retinopathy [9]. To 
assist in detection of early microvascular symptoms of diabetic 
retinopathy, algorithms are now being developed to automate 
detection of findings such as microaneurysms and cotton wool 
spots amidst visual artifacts in different types of imaging con-
ditions [10, 11].

Deep learning diagnostics

In 2018, the Food and Drug Administration (FDA) approved a 
new artificial intelligence (AI)-based diagnostic system, IDx-
DR, to diagnose diabetic retinopathy based on fundus pho-
tos and macular OCT after a study evaluating its diagnostic 
performance showed a specificity of 90.7% (95% confidence 
interval (CI), 88.3-92.7%) and a sensitivity of 87.2% (95% 
CI, 81.8-91.2%) [12]. The system diagnosed more than mild 
diabetic retinopathy and diabetic macular edema in diabetic 
patients not previously known to have either condition. Nota-
bly, the system was used in all primary care locations, demon-
strating its ease of use and proving itself to be a powerful tool 
in identifying patients, who should receive additional referral 
to an eye care provider. Moreover, combining deep learning 
algorithms with physician readers has been shown to increase 
the accuracy and confidence in diagnosing diabetic retinopa-
thy [13].

Another machine learning system combines digital mi-
croaneurysm detection from retinal fundus photos with prot-
eomics analysis from tear fluid samples to diagnose diabetic 
retinopathy with a specificity of 0.78 and a sensitivity of 0.93 
[14]. Tear fluid analysis is not routinely used in current clinical 
practice, but this study demonstrates a potential use for it as 
another non-invasive method of disease detection. Ultimately, 
these studies suggest that incorporating clinical biomarkers 
and physician readers with AI-based deep learning algorithms 
of retinal imaging could improve the overall accuracy and ca-
pability of diagnosing diabetic retinopathy.

Machine learning is also progressing to diagnose other 
ophthalmologic conditions. Retinopathy in premature in-
fants is an important cause for childhood blindness globally, 
and scientists are now developing algorithms with deep neu-
ral networks to detect tortuosity and dilation of retinal ves-
sels in order to automate diagnosis from retinal photos [15]. 
Additionally, an AI-based technique revealed that the signifi-
cantly lower macular vessel density in glaucoma patients was 
linearly correlated to the ganglion cell-inner plexiform layer 
thickness (GCIPLT), suggesting the development of potential 
biomarkers to detect the progression of vision loss in glaucoma 
[16]. Furthermore, AI methods have been developed to detect 
age-related macular degeneration, cataracts, and keratoconus, 
among others [17, 18]. Aside from detection of diseases, deep 
learning has also been tested to assess OCTA image quality by 
accurately differentiating between sufficient and insufficient 
OCTA images based on criteria of motion artifact score, cen-
tered vs. decentered fovea, visibility of small capillaries, and 
segmentation accuracy score [19]. Thus, deep learning in reti-

nal imaging is proving its potential not only in disease diagno-
sis, but in quality control purposes as well.

Heart, Eye and AI

Machine learning in cardiology

The role of AI and deep learning in cardiovascular applica-
tions is not new. Deep learning has been used in a number 
of cardiac imaging techniques, including intravascular OCT, 
echocardiography, cardiac magnetic resonance, computed to-
mography, and single-photon emission computed tomography 
[20]. In 2019, researchers developed a deep learning algorithm 
to predict mortality in hospitals after percutaneous coronary 
intervention based on age and ejection fraction, achieving up 
to 0.927 discrimination performance with the AdaBoost model 
[21]. A similar study used machine learning algorithms to pre-
dict diagnosis and disease complexity of over 10,000 patients 
with adult congenital heart disease or pulmonary hypertension; 
the algorithms reached an accuracy of 91.1% for diagnosis and 
97.0% for disease complexity [22].

Retinal imaging, heart disease, and deep learning

The use of deep learning combined with retinal imaging in 
the diagnosis of cardiovascular conditions is a relatively new 
area of research (Table 1 [23-31]). In 2007, researchers from 
Australia, Singapore, and the USA showed that retinopa-
thies obtained from fundus photographs were associated with 
the presence of any degree of coronary artery calcification 
(CAC) score > 0, measured by cardiac computed tomogra-
phy scanning (odds ratio (OR): 1.22; 95% CI: 1.04 - 1.43) in 
a multi-ethnic population without clinical heart disease, af-
ter adjustment for multiple variables [23]. The same group of 
researchers also showed that narrower retinal arterioles ob-
tained from fundus images were associated with concentric 
remodeling of the left ventricle as seen in cardiac magnetic 
resonance imaging (MRI) (OR: 2.06; 95% CI: 1.57 - 2.70) in a 
study with 4,593 individuals without any clinical cardiac dis-
ease [24]. Retinopathy was also correlated with left ventricu-
lar (LV) remodeling (OR: 1.31; 95% CI: 1.08 - 1.61), particu-
larly in individuals with diabetes, hypertension or coronary 
calcification. The researchers inferred that microvascular dis-
ease, including retinopathies, can be reflective of subclinical 
macrovascular disease and share similar pathophysiological 
processes.

Another study tested the hypothesis that worsening hyper-
tension was associated with capillary blood flow reduction and 
retinal microvessel remodeling, which was assessed by com-
bining laser Doppler flowmetry with laser scanning tomog-
raphy. The findings demonstrated that retinal capillary flow, 
and thus perfusion, was lower in patients with more advanced 
arterial stiffness (pulse wave velocity > 10 m/s) [25]. Cardiac 
microvascular disease can also be evaluated by assessing reti-
nal arteriolar narrowing as detected by fundus photography. In 
patients without coronary artery calcification, narrower retinal 
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arterioles were associated with lower hyperemic myocardial 
blood flow and perfusion reserve, which reflect microcircula-
tion in the absence of stenosis [32].

Subfoveal choroidal thickness (SFCT) has been studied 
as a correlate to common cardiovascular disease (CVD) risk 
factors; multivariate analysis showed that diabetes was associ-
ated with thinner choroid (P = 0.001), whereas hypertension (P 
= 0.006) and hyperlipidemia (P = 0.05) were associated with 
thicker choroid [26]. In a separate study, SFCT was found to 
be significantly thicker in participants with hypercholester-
olemia compared to those without (P = 0.041) [33]. However, 
in patients with severe internal carotid artery stenosis, SFCT 
was significantly lower. Those with severe stenosis also had a 
lower choroidal vascularity index (CVI), illustrating that CVI 
may be an indicator of stenotic changes in the internal carotid 
artery [27].

Serum amyloid A (SAA) protein deposition can lead to 
cardiac amyloidosis, although the incidence is very rare. The 
Beaver Dam Eye Study used retinal imaging to assess if there 
was a relationship between retinal vascular caliber and differ-
ent inflammatory markers including SAA. SAA levels were 
higher in patients who had smaller arteriolar diameters after 
adjustment for other characteristics [34]. Stettler et al expand-
ed on the Beaver Dam Eye Study and focused on SAA and 
retinal microvascular parameters in hypertensive patients with 
and without type 2 diabetes. They found that SAA was sig-
nificantly higher in diabetic patients compared to nondiabetics 
(3.15 mg/L vs. 2.65 mg/L; P = 0.03), and that diabetic patients 
had shorter retinal arteriolar vessels than nondiabetics (446.9 
± 103.7 vs. 466.4 ± 126.8 pixels; P = 0.03) [35]. Overall, more 
research is still needed to elucidate the association between 
retinal findings and cardiac amyloid.

In 2018, Google researchers trained a deep learning sys-
tem based on AI to predict cardiovascular risk factors such as 
age, ethnicity, gender and smoking status in addition to sys-
tolic and diastolic blood pressure from retinal fundus images 
[28]. Researchers trained the system on images obtained from 
284,335 patients of various ethnicities across two datasets, 
the UK Biobank and the EyePACS, and predicted results on 
13,025 patients. The AI system then combined the predicted 
information from all the risk factors to forecast the onset of 
major adverse cardiovascular events (MACEs) within 5 years. 
Using retinal fundus images alone, the model achieved an area 
under the ROC curve (AUC) of 0.70 (95% CI: 0.648 - 0.740) 
for predicting 5-year MACE values, which was comparable to 
an AUC of 0.72 (95% CI: 0.67 - 0.76) obtained from the Eu-
ropean SCORE risk calculator. These results advocate for the 
use of machine learning to predict cardiovascular risk directly 
from retinal fundus images.

The ages of the participants from the above studies ranged 
from 40 to 85 years. Researchers are still exploring whether 
it is age or the characteristics of specific vascular disease that 
drives the learnability potential of the images. In a 2018 study, 
scientists compared features of the retinal microvasculature 
using OCT in a group of men, who experienced myocardial 
infarction before 50 years of age and found no significant dif-
ferences in the arterial-venous ratio (AVR) or retinal vessel 
caliber when compared to an age-matched control group [29]. 
While the study was powered to 99% to detect the slightest St
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differences between the two groups, no women were included 
in either group, suggesting that gender-specific hormonal in-
fluences could play a distinguishing role in the development 
of heart disease in men and women. Further analyses are being 
performed to examine risk stratification by gender for acute 
coronary syndromes [36].

In China, deep learning was utilized in a study of 625 sub-
jects to predict hypertension, hyperglycemia, dyslipidemia, 
and other cardiovascular risk factors based on retinal fundus 
images. The model achieved an accuracy of 78.7% in detecting 
hyperglycemia, 68.8% in detecting hypertension, and 66.7% 
in detecting dyslipidemia. Additionally, other risk factors such 
as age, drinking status, smoking status, salty taste, and body 
mass index (BMI) were also predicted with accuracies > 70%. 
These results support the application of deep learning to retinal 
fundus images in the identification of individuals at risk for 
CVD [30].

Furthermore, researchers validated a deep model using 
retinal fundus images not only to predict the presence of ath-
erosclerosis, but to determine if the atherosclerosis score was 
correlated with cardiovascular death relative to the Framing-
ham risk score. A total of 6,597 participants with retinal fun-
dus exams and carotid artery sonography were used to develop 
the deep model for prediction of atherosclerosis, and 32,227 
subjects with only retinal fundus exams were used to validate 
whether the atherosclerosis score could predict future cardio-
vascular death. The model demonstrated an accuracy of 0.583 
for predicting atherosclerosis, with a sensitivity of 0.891, but 
low specificity of 0.404. In terms of cardiovascular mortality, 
those with higher deep-learning funduscopic atherosclerosis 
scores (0.33 - 0.67 and 0.67- 1.00) had significantly higher 
risk of CVD mortality (hazard ratio (HR): 8.83; 95% CI: 1.41 
- 6.15; and HR: 8.83; 95% CI: 3.16 - 24.7, respectively) than 
those with the lowest scores. Deep learning of retinal fundus 
images can be used to predict atherosclerosis, which can sup-
plement current risk stratification scores for cardiovascular 
mortality [31]. Atherosclerosis contributes to the development 
of RVO, and hyperlipidemia was found to be much higher in 
those with RVO than in those without [37]. Matei et al evalu-
ated statins for preventive efficacy in patients who were at high 
risk for developing RVO and for therapeutic efficacy in pa-
tients who had developed RVO. Unfortunately, neither a pre-
ventive nor therapeutic benefit was seen in patients who took 
statins compared to those who did not, although it was noted 
that the study was underpowered (n = 172 eyes) to detect a 
protective effect [38].

Other Applications of Retinal Microvasculature 
Analysis

Stroke

Extensive research has demonstrated that there is a strong cor-
relation between retinal vascular changes and clinical stroke 
[39]. Baseline retinopathy is associated with incidental stroke, 
and retinal venular widening is associated with an increased 
risk of stroke and stroke mortality. Furthermore, retinal vas-

cular changes may differ based on various stroke subtypes and 
could help to discern clinical stroke from other causes of focal 
neurologic deficits. Interestingly, despite the strong correlation 
of retinal vascular changes with stroke, the addition of retinal 
imaging has only been shown to improve stroke risk stratifica-
tion by about 10% from already established risk factors [39].

Alzheimer’s disease

Analysis of retinal microvasculature continues to expand as 
research finds that it reflects the state of health elsewhere in 
the body. In patients with Alzheimer’s disease, vessel den-
sity, perfusion density and GCIPLT in the central macula of 
the retina were found to be significantly reduced compared 
to both healthy controls and patients with mild cognitive im-
pairment [40]. Another study found that Alzheimer’s patients 
with β-amyloid deposits in the brain as observed by positron 
emission tomography (PET) studies had texture differences in 
retinal microvasculature compared to control subjects without 
these deposits [41]. In Alzheimer’s patients, the retinal arte-
rioles had bigger diameters near the optic nerve head while 
retinal venules showed an increased mean tortuosity. The amy-
loid deposits in the retina affecting the scattering of light in the 
hyperspectral retinal images are a potential biomarker for the 
disease.

Multiple sclerosis (MS)

Demyelinating lesions can lead to degeneration of optic nerve 
axons, which present as atrophied peripapillary retinal nerve 
fiber layer and ganglion cell-inner plexiform complex on 
OCT. OCT in MS patients can also show macular microcys-
toid changes that correlate to disease severity [42]. While use 
of OCT in MS has expanded considerably, additional research 
is needed to validate OCT as a biomarker in the diagnosis and 
progression of MS and as an indicator of response to therapy 
[43].

Chronic kidney disease (CKD)

The kidney and the eye share many structural and physiologi-
cal similarities suggesting that an analysis of the eye may yield 
valuable information about renal function. Choroidal thinning 
was found to be directly correlated with a lower estimated glo-
merular filtration rate (eGFR) and higher proteinuria, but little 
is known about the exact mechanisms behind this association 
[44]. More studies are needed to explore the relationship be-
tween retinal imaging and CKD outcomes.

Photoacoustic imaging

Non-invasive and high resolution photoacoustic imaging 
has recently been adapted to optical applications to improve 
disease detection and potential treatment [45]. Scientists are 
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now developing enhanced technologies to combine machine 
learning with quantitative photoacoustic imaging to measure 
parameters such as local blood oxygenation in real time [46]. 
Future studies are focusing on refining the programs to work 
on volumes of whole tissues at higher resolutions.

Biological image processing

Researchers at Google are now investigating the application of 
deep learning into extracting data from cellular images [47]. 
Scientists have built a software to detect morphology and lo-
calization of subcellular and nuclear organelles from fluores-
cence microscopy photos and to combine this information into 
a three-dimensional (3D) image [48]. This automated process-
ing could dramatically improve the speed, efficiency, and ob-
jectivity of biological imaging analysis.

Conclusions

With aging populations across the globe, the use of AI and deep 
learning systems are starting to drive automated diagnoses in 
clinical ophthalmology [49]. While machines can be trained 
to discern and learn visual patterns of diseased and healthy 
microvessels, researchers are seeking ways to characterize the 
exact series of mechanisms by which machines learn how to 
detect and assess the severity of disease [50]. The expanded 
use of deep learning naturally prompts additional questions, 
such as accountability of diagnoses on the part of humans or 
machines in the case of software errors, as well as optimiza-
tion of the technology under clinical constraints [50]. As scien-
tists continue to develop increasingly intuitive algorithms with 
quick learning capabilities, the possibility of a clinical diag-
nostic robot that can scan retinas to examine the inner work-
ings of the heart could be a reality in the near future.
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