Fibroblast Growth Factor 21 Suppressed Neutrophil Extracellular Traps Induced by Myocardial Ischemia/Reperfusion Injury via Adenosine Monophosphate-Activated Protein Kinase
Abstract
Background: Previous investigations have established the anti-inflammatory properties of fibroblast growth factor 21 (FGF21). However, the specific mechanism through which FGF21 mitigates myocardial ischemia/reperfusion (I/R) injury by inhibiting neutrophil extracellular traps (NETs) remains unclear.
Methods: A mice model of myocardial I/R injury was induced, and myocardial tissue was stained with immunofluorescence to assess NETs. Serum NETs levels were quantified using a PicoGreen kit. In addition, the expression levels of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and FGF21 were evaluated by Wes fully automated protein blotting quantitative analysis system. Moreover, a hypoxia/reoxygenation (H/R) model was established using AMPK inhibitor and agonist pretreated H9c2 cells to further explore the relationship between FGF21 and AMPK.
Results: Compared with the control group, serum NETs levels were significantly higher in I/R mice, and a large number of NETs were formed in myocardial tissues (97.63 11.45 vs. 69.65 3.33, P < 0.05). However, NETs levels were reversed in FGF21 pretreated mice (P < 0.05). Further studies showed that FGF21 enhanced AMPK expression, which was significantly increased after inhibition of AMPK and decreased after promotion of AMPK (P < 0.05).
Conclusions: FGF21 may exert cardioprotective effects by inhibiting I/R injury-induced NETs via AMPK.
Cardiol Res. 2024;15(5):404-414
doi: https://doi.org/10.14740/cr1705